
NextBASIC new commands and features (Updated 26 Sep 2022)

This document describes new commands and features for NextBASIC (except file-
related commands and editor features, described in separate documents) as at
NextZXOS v2.07l.

This should be read in conjunction with the other documents:
NextBASIC file-related commands and features
NextZXOS Editor features
NextZXOS and esxDOS APIs
NextZXOS Unimplemented features

A list of updates made to this document is now provided at the end.

Page 1 of 40

New keyword tokens
The following keyword tokens are defined in addition to SPECTRUM, PLAY and all
the 48K BASIC tokens:

PEEK$ $87
REG $88
DPOKE $89
DPEEK $8a
MOD $8b
<< $8c
>> $8d
UNTIL $8e
ERROR $8f
ON $90
DEFPROC $91
ENDPROC $92
PROC $93
LOCAL $94
DRIVER $95
WHILE $96
REPEAT $97
ELSE $98
REMOUNT $99
BANK $9a
TILE $9b
LAYER $9c
PALETTE $9d
SPRITE $9e
PWD $9f
CD $a0
MKDIR $a1
RMDIR $a2

New errors
Invalid mode
Direct command error
Loop error
No DEFPROC
Fragmented - use .DEFRAG

Page 2 of 40

Memory bank access
The Next comes with between 1MB and 2MB of RAM, divided into 16K banks. These
are numbered as follows under NextZXOS:

0..7 Same as the standard RAM banks on all 128K Spectrums.
8..47 Additional RAM banks available on 1MB Nexts.
48..111 Further additional RAM banks available on 2MB Nexts.

(the remaining 256K is used for ROMs and the DivMMC interface, and is
unavailable to users).

Under NextZXOS the memory capacity is shown in the on-screen menus. It can also
be queried programmatically by examining the new system variable, MAXBNK, which
contains the number of the highest usable bank in the system (normally 47 or
111).

NextZXOS uses the first 9 RAM banks as follows:
0 Standard 48K Spectrum memory (at 49152-65535)
1 RAMdisk
2 Standard 48K Spectrum memory (at 32768-49151)
3 RAMdisk
4 RAMdisk
5 Standard 48K Spectrum memory (at 16384-32767)
6 RAMdisk
7 Used for workspace and data structures by NextZXOS
8 Used for additional screen data (in lo-res, Timex hi-res and Timex

hi-colour modes) and other data by NextZXOS

Banks 9+ are always available to the programmer, and can be accessed using the
new BANK command (and extended LOAD/SAVE/VERIFY..BANK.. commands seen
previously).

Banks 5,2,0 (the standard 48K Spectrum memory) may also be used without
restriction in the BANK command, but it should be noted that it is generally
only safe to use the screen area (0-6911 in bank 5) plus any memory located
above RAMTOP - the rest of the memory is managed by NextBASIC and should not be
modified.

Banks 1,3,4,6 can be used if the BANK 1346 USR command has been executed.

Banks 7 and 8 are for system use only, and can never be used in a BANK command.

The following new commands are available to manipulate memory and banks:

BANK NEW var
Reserves the next available free bank number and assigns it to the numeric
variable var, ready for use in other BANK commands. This command is useful for
allocating banks for use in BASIC, allowing for cases where a resident machine
code program has previously allocated banks for its own use. (It is not
essential to use this command, as commands such as BANK..LOAD will automatically
allocate the specified bank for use by BASIC, but only if the specified bank is
not already in use by a resident machine code program.)

BANK n CLEAR
Marks bank n as free for use by other parts of the system (eg dot commands).
Banks are marked as used by BASIC by commands that access them (eg
BANK..PEEK/POKE/COPY/ERASE/USR/LAYER, LAYER BANK and LOAD..BANK). Marked banks
remain reserved after a NEW command, and are only released at a reset (or with
this command).
Note that the layer 2 banks (by default 9,10,11 but may be changed using the
LAYER BANK command) cannot be released. However, if you are not using layer 2,
they can be used for other purposes (including by machine code programs).

BANK 1346 USR
Allow banks 1,3,4,6 to be used in the BANK command. This will delete all files
on the RAMdisk and unmap it from any drive it is currently mapped to (usually

Page 3 of 40

M:).

BANK 1346 FORMAT
Release banks 1,3,4,6 for use by the RAMdisk again. (The RAMdisk will need to be
mapped back to a drive using the MOVE..IN command).

BANK n COPY TO n2
Copy all 16K from bank n to bank n2

BANK n COPY offset,len TO n2,offset2
Copy len bytes starting at offset offset in bank n to offset offset2 in bank n2

BANK n ERASE
BANK n ERASE value
Fill all 16K of bank n with value (zero is used if value not specified)

BANK n ERASE offset,len
BANK n ERASE offset,len,value
Fill len bytes at offset offset in bank n with value (zero is used if value not
specified)

BANK n LAYER x,y,w,h TO [rop] offset
Copies data from the screen (in the current mode) to offset in bank n.
BANK n LAYER offset TO [rop] x,y,w,h
Copies data to the screen (in the current mode) from offset in bank n.

[rop] is an optional symbol modifier which affects how the data is copied:
 TO (no symbol) straightforward copy
 TO & AND the copied data into the destination
 TO | OR the copied data into the destination
 TO ^ XOR the copied data into the destination
 TO ~ copy data into the destination unless it is equal to the

global transparency colour (default 227); in this case,
leave the destination unchanged

The area of screen copied by BANK...LAYER is defined by the top left character
position x,y and width w characters, height h characters. (As with windows,
character positions range from x=0..31 and y=0..23 for all modes except lo-res,
where they range from x=0..15 and y=0..11).

Data copied from the screen is laid out as follows, depending upon currently
selected layer/mode:

Standard resolution (layer 0 or layer 1,1)
The attribute data comes first, stored as h consecutive rows of attributes, w
bytes wide.
Following this is the screen data, stored as h*8 consecutive rows of pixel data,
w bytes wide.
The total memory used is therefore w*h*9 bytes.

Timex hi-res (layer 1,2)
In this mode, each “character” position is 16 pixels wide, comprising a “left”
and “right” half.
The screen data is stored as h*8 consecutive pixel rows of data.
For each row, the first w bytes comprise the left halves of all characters.
The next w bytes in the row comprise the right halves of all the characters.
The total memory used is therefore w*h*16 bytes.

Timex hi-colour (layer 1,3)
The screen data is stored as h*8 consecutive pixel rows of data.
For each row, the first w bytes comprise the pixel data.
The next w bytes in the row comprise the attribute data.
The total memory used is therefore w*h*16 bytes.

Lo-res (layer 1,0) and layer 2
The data is stored as h*8 consecutive pixel rows of data.

Page 4 of 40

For each row, there are w*8 bytes, with each byte representing a single pixel.
The total memory used is therefore w*h*64 bytes.

BANK n POKE offset,valuelist...
POKEs a sequence of comma-separated values starting at offset offset (0-16383)
in bank n. Each value in the list may be:

value (numeric expr) single byte
value~ (numeric expr) 16-bit word (low byte stored first)
v$ (string expr) string (each character stored in turn)
v$~ (string expr) string (bit 7 will be set on final char)

BANK n DPOKE offset,valuelist...
POKEs a sequence of comma-separated values starting at offset offset (0-16383)
in bank n. The difference from POKE is that the default interpretation for a
numeric value is a double-byte (16-bit word) rather than a single byte. Each
value in the list may be:

value (numeric expr) 16-bit word (low byte stored first)
value~ (numeric expr) single byte
v$ (string expr) string (each character stored in turn)
v$~ (string expr) string (bit 7 will be set on final char)

POKE addr,valuelist...
DPOKE addr,valuelist...
Equivalents of BANK..POKE and BANK..DPOKE for the standard memory.

examples:
BANK b POKE “A null-terminated string”,0,”A bit7-terminated string”~,1000~
BANK 25 DPOKE 12345,33206,12354
DPOKE 23606,32768-256
POKE USR “a”,1,3,7,15,31,63,127,255

Some special-case commands are also available to read strings from memory (note
that PEEK$ cannot currently be used in a general string expression, although
this is planned for a future version of NextBASIC):

LET stringdest = PEEK$(addr,len)
LET stringdest = BANK n PEEK$(addr,len)
Reads memory region (or region of bank) to string

LET stringdest = PEEK$(addr,~)
LET stringdest = BANK n PEEK$(addr,~)
Reads a bit7-terminated string from memory or bank (NOTE: bit 7 will still be
set on the string that is returned)

LET stringdest = PEEK$(addr,~code)
LET stringdest = BANK n PEEK$(addr,~code)
Reads a string terminated with the character value code from memory or bank
(NOTE: the string that is returned excludes the terminating character)

Page 5 of 40

Palette manipulation
The Next provides 6 palettes: 2 palettes each (numbered 0 and 1) for sprites,
ULA modes, and layer2. All can be manipulated in BASIC. Note that the Editor
will use ULA palette 1 so it is safe to muck around with palette 0 without risk
of being unable to see what's going on (the current palette will be restored by
the Editor when BASIC is running).

The following new palette manipulation commands are available:

PALETTE DIM n
Palettes being specified in the LAYER PALETTE BANK and SPRITE PALETTE BANK
commands use n bits per colour (n=8 or 9), ie 256 bytes or 512 bytes (default
value is n=9).

PALETTE FORMAT n
Enable the ULANext extended palette with n INKs (1,3,7,15,31,63,127 or 255)
When the ULANext extended palette is enabled, BRIGHT and FLASH are not allowed
(in standard and Timex hi-colour modes), and INK and PAPER accept the
appropriate new range of values (layer 1 modes only - see later notes).
If n=0, disables the ULANext extended palette and uses standard attributes with
8 inks, 8 papers, bright and flash.

PALETTE OVER n
Sets the global transparency colour to n (default value is 227)

PALETTE CLEAR
Resets all palettes and related settings to defaults. This is also done by NEW.

Page 6 of 40

Sprites
The Next provides 128 sprite objects and 64 sprite patterns (size 16x16 pixels).
These can be manipulated with the following new commands:

SPRITE BANK b
Defines all 64 sprite patterns using the 16K of data (256 bytes per pattern) in
bank b.

SPRITE BANK b,offset,p,n
Defines n sprite patterns starting with pattern p. Pattern data begins at offset
offset in bank b.

SPRITE PALETTE n
Switch to using sprite palette n (0 or 1)

SPRITE PALETTE n BANK b,offset
Set sprite palette n from bank b, at offset offset. Either 256 bytes or 512
bytes of data is used, depending upon the PALETTE DIM setting.

SPRITE PALETTE n,i,v
Set sprite palette n, index i to value v
NOTE: v is always specified as a 9-bit value RRRGGGBBB (0-511) regardless of the
PALETTE DIM setting, and can be conveniently specified using the standard
Spectrum BIN function.

SPRITE PRINT n
Enable (n=1) or disable (n=0) sprites

SPRITE BORDER n
Enable (n=1) or disable (n=0) sprites over the border

SPRITE s,x,y,p,f,rf,mx,my
Set sprite s to position (x,y), pattern p, x-scaling mx and y-scaling my.
If the sprite id s is negative, this sprite is a relative sprite, and its
position is relative to the previous anchor sprite (defined with a positive
sprite id). See later for more information on relative sprites.

The flags parameter, f, is a bitmask:
bit 0: visible flag
bit 1: rotate flag
bit 2: Y-mirror flag
bit 3: X-mirror flag
bits 4..7: palette offset (or zero)

The relative-flags parameter, rf, is a bitmask:
bit 0: type: 0=composite, 1=unified [only valid for anchor sprites]
bit 1: pattern is relative to the anchor [only valid for relative sprites]
bit 2: palette offset is relative to the anchor [only valid for relative

sprites]

The scaling parameters mx and my are: 0=1x (no scaling), 1=2x, 2=4x, 3=8x.

Any parameter(s) in the SPRITE command can be omitted, and its value will be
left unchanged from the last time it was explicitly specified.

(Again, the BIN function can be used to specify the flag parameters more
conveniently.)

SPRITE DIM x1,y1,x2,y2
Sets the clip window for sprites from (x1,y1) to (x2,y2). Any part of a sprite
outside this window is not visible. Note that this has no effect if sprites over
the border (SPRITE BORDER 1) is enabled.

SPRITE CLEAR
Resets the sprite attributes and global settings to defaults. This is also done
by NEW.

Page 7 of 40

Relative sprites
Sprites can be grouped together to form “composite” or “unified” sprites. Each
such grouping consists of a single “anchor” sprite (this is always the sprite
with the lowest sprite id in the grouping) followed by any number of “relative”
sprites, with sprite ids following the anchor sprite in sequence.

When an anchor sprite is moved or made invisible, all the associated relative
sprites are also moved or made invisible. It is also possible for individual
relative sprites to be made invisible or visible. The rule is that a relative
sprite is only visible if its own visibility flag is set and the visibility flag
of the associated anchor sprite is set.

To define a relative sprite, simply specify its sprite id as a negative number
(eg specifying SPRITE -1,.... defines sprite 1 as relative to the preceding
anchor sprite, 0). Any number of relative sprites can follow an anchor sprite.

The x and y coordinates specified in SPRITE commands for relative sprites are
not actual coordinates, but signed offsets in the range -128 to +127 from the
coordinates of the anchor sprite.

Additionally, if the “pattern relative” flag is set for a particular relative
sprite, its pattern number is added to the pattern number from the anchor sprite
(wrapping round if the sum exceeds 64). Using this, it is easy to animate an
entire composite/unified sprite simply by changing the pattern of the anchor
sprite.

Similarly, if the “palette relative” flag is set for a particular relative
sprite, its palette offset is added to the palette offset from the anchor sprite
(wrapping round if the sum exceeds 16).

Composite vs Unified sprites
The type of a grouping of sprites is determined by the “type” flag of the anchor
sprite.

For composite sprites, the remaining sprite parameters (rotation, x/y mirrors
and x/y scaling) are independent for each relative sprite. This allows creation
of a composite sprite where individual relative sprites can be rotated etc for
animation purposes.

For unified sprites, the rotation and x/y mirrors of the relative sprites are
relative to that of the anchor sprite. Therefore, when the rotation or x/y
mirrors of the anchor are changed, all the relative sprites rotate or reflect
about the anchor.

Additionally, for unified sprites, the x/y scaling of the individual relative
sprites is ignored, and the x/y scaling of the anchor sprite is applied to all
sprites in the grouping, allowing the entire grouping to be scaled just by
changing the scaling of the anchor. (This scaling also applies to the relative
x/y coordinate offsets).

Batching
The standard SPRITE command normally has immediate effects to what is displayed
on the screen. However, it is also possible to place NextBASIC into batching
mode. In this mode, the standard SPRITE command has no immediate effect, but the
changes specified are remembered. When all the required changes have been made
(using multiple SPRITE commands) they can all be applied to the screen at once,
giving a more synchronised look to your game. The following commands control
this mode:

SPRITE STOP
Turns off immediate updates and enables batching mode.

SPRITE RUN
Turns immediate updates back on, disabling batching mode (this is also done by

Page 8 of 40

the SPRITE CLEAR command).

SPRITE MOVE
When batching mode is enabled, sends all outstanding sprite changes to the
hardware immediately.

SPRITE MOVE INT
The same as SPRITE MOVE, but first waits for the 50/60Hz interrupt. This can be
used to synchronise your game to the framerate.

SPRITE MOVE INT y
The same as SPRITE MOVE INT, but changes are not sent to the hardware until
after the TV scanline corresponding to sprite coordinate y. This can be used to
avoid flicker by ensuring sprite changes don't occur whilst the TV is midway
through displaying the sprite(s) in question.

Automatic sprite movement
In order to reduce the amount of work a NextBASIC program needs to do to animate
and move sprites, commands are provided to allow some or all of this work to be
done automatically whenever a SPRITE MOVE command is issued. Any sprite can have
automatic movement or animation applied to it, and the standard SPRITE command
can still be used to perform any other changes when they are needed.

The main command for setting up automatic sprite movement is the SPRITE CONTINUE
command:

SPRITE CONTINUE s, [x1 [TO x2]] [STEP xs] [RUN or STOP],
 [y1 [TO y2]] [STEP ys] [RUN or STOP],
 [p1 [TO p2]],
 [f], [r], [d]

As indicated by the square brackets, each parameter (or sub-clause of a
parameter) is optional. If not specified, the previous value will be retained.

Movement in the x-direction is specified with:
x1: minimum value for x-coordinate

 x2: maximum value for x-coordinate (=x1 if not provided)
 xs: signed step in pixels (-127..+127) for every move

RUN: indicates movement in the x-direction is initially on
 STOP: indicates movement in the x-direction is initially off

Movement in the y-direction is specified with:
y1: minimum value for y-coordinate

 y2: maximum value for y-coordinate (=y1 if not provided)
 ys: signed step in pixels (-127..+127) for every move

RUN: indicates movement in the y-direction is initially on
 STOP: indicates movement in the y-direction is initially off

Pattern animation is specified with:
p1: minimum value for sprite pattern
p2: maximum value for sprite pattern (=p1 if not specified)

Movement rates are controlled with:
r: rate at which sprite moves/animates (0-255)

0=on every SPRITE MOVE command
1=skip 1 SPRITE MOVE command after moving
2=skip 2 SPRITE MOVE commands after moving
etc

d: delay before initial movement (0-255)
0=move on the first SPRITE MOVE command
1=skip 1 SPRITE MOVE command before the first move
2=skip 2 SPRITE MOVE commands before the first move
etc

Page 9 of 40

The flags parameter, f, is an 8-bit mask (best specified with BIN):
bits 1..0: behaviour when x,y limits are reached:

 00 = reflect this direction
 01 = stop this direction, start other direction
 10 = stop this direction
 11 = stop completely and make sprite invisible
 bit 2: flip the Y-mirror flag when y limits are reached
 bit 3: flip the X-mirror flag when x limits are reached
 bit 4: behaviour of pattern change:
 0 = cycle upwards, wrapping back to lower limit
 1 = bounce between lower and upper limits
 bit 5: if set, sprite is disabled when pattern reaches limits
 bit 6: if set, update pattern even when sprite is stationary
 bit 7: if set, X-mirror/Y-mirror/rotation flag are set
 according to direction of travel (overrides bits 2 & 3)

The initial position, pattern and other details of the sprite are determined by
the last standard SPRITE command. If these values are outside the
maximum/minimum ranges, then (depending upon the specified step and RUN/STOP
status) they will gradually change until they fall within the max/min range.

If automatic movement is specified for an anchor sprite then, as you might
expect, the entire composite/unified sprite will be automatically moved.

Automatic movement can also be specified for individual relative sprites if
desired (the parameter s is always positive for the SPRITE CONTINUE command, but
the sprite remains relative if specified as such in the last standard SPRITE
command). Most typically this would be done to animate the relative sprites
separately, so that one relative sprite might animate whilst the others remain
the same (for example). However, it can also be used to automatically move a
relative sprite around within a composite/group sprite. The main restriction
here is that the movement limits are unsigned, so this works best for relative
sprites with positive offsets (add 256 to negative offsets when specifiying them
in a movement range).

Automatic movement can be temporarily suspended for particular sprites if
desired:

SPRITE PAUSE s1 [TO s2]
Turns off automatic movement for a single sprite or range of sprites.

SPRITE CONTINUE s1 [TO s2]
Turns automatic movement back on for a single sprite or range of sprites.

Sprite functions
Several functions are provided to return details about sprites, and to make
collision detection checks.

NOTE: All these functions are currently available only in the integer expression
evaluator, so can only be present in an expression that starts with %.

%SPRITE s
Returns 1 (true) if sprite is visible, 0 (false) if not visible

%SPRITE CONTINUE s
Returns a bitmask describing the automatic movement enabled for this sprite:

bit 0: set if automatic movement is enabled
bit 1: set if currently moving in the Y direction
bit 2: set if currently moving in the X direction

(If bit 0 is set but neither bit 1 or 2 is set, only the pattern is being
animated).

Page 10 of 40

%SPRITE AT(s,c)
Returns a coordinate or other movement-related value for the sprite:

%SPRITE AT(s,0) returns x coordinate
%SPRITE AT(s,1) returns y coordinate
%SPRITE AT(s,2) returns pattern number
%SPRITE AT(s,3) returns x step
%SPRITE AT(s,4) returns y step
%SPRITE AT(s,5) returns delay before the sprite next moves

(0 means the sprite will move on the next SPRITE MOVE command)

%SPRITE OVER(s1, s2 [TO s3] [,overlapX [,overlapY]])
Performs bounding-box collision detection between sprite s1, and a single other
sprite s2 or a range of sprites s2..s3.

Optional acceptable overlaps (in pixels) can be provided in overlapX and
overlapY. If overlapX is not present, 0 (no overlap) is used. If overlapY is not
present, then the value of overlapX is used. Overlaps should be 0..7 for an
unscaled sprite s1, or 0..15 for a 2x scaled sprite etc.

Returns 0 (false) if there is no collision
Returns the number of the colliding sprite (s2..s3) if there was a collision.

NOTE:
If the colliding sprite (s2..s3) is id 0, 128 is returned.

NOTE:
Any relative sprites following s2 or s3 will also be checked, until the next
anchor sprite not in the specified range.

Page 11 of 40

Layers and modes
The Next provides various new graphics modes, to which NextBASIC gives access
using the LAYER command.

There are conceptually 3 layers of graphics which can be seen on the screen at
the same time (the 3 layers can be placed in any front-to-back order). The top
layer is usually the sprites, which are manipulated with the SPRITE command. The
other 2 layers are manipulated by the LAYER command. The “bottom” of these two
layers can only be seen where the “top” layer has the transparency colour (227).

Layer 1 is the ULA screen, and by default is the bottom layer.
This can be in any of 4 different modes:
•mode 0: lo-res mode (128x96 pixels, each can be any of 256 colours)
•mode 1: standard Spectrum screen mode (256x192 pixels, with 32x24 attributes)
•mode 2: Timex hi-res mode (512x192 pixels, monochrome but with 8 different
selectable global ink/paper combinations)
•mode 3: Timex hi-colour mode (256x192 pixels, with 32x192 attributes)

Layer 2 is 256x192 pixels, each can be any of 256 colours. By default it is the
top layer but disabled, so does not usually obscure the layer 1 screen.

The LAYER command allows either layer to be selected (and for layer 1, any of
the 4 available modes to be selected). After the LAYER command takes effect, all
of the following standard Spectrum commands take place on the selected
layer/mode (until another LAYER command is issued):
•INK, PAPER, BRIGHT, FLASH, OVER, INVERSE
•CLS
•PLOT, DRAW, CIRCLE
•PRINT, LIST, CAT etc (through the standard “s” channel, usually on stream 2)

NOTE: The ATTR, POINT and SCREEN$ functions do not take account of the
layer/mode settings, and only refer to the standard Spectrum screen. However,
instead, the following new command is available:

POINT x,y TO var
Checks the pixel on the current layer at (x,y) and stores the value in variable
var.
The value will be 0 or 1 for standard Spectrum modes and Timex hi-res and hi-
colour modes (pixel off or on). The value will be 0-255 for lo-res and layer 2
(actual pixel colour).

BRIGHT and FLASH are only effective in standard and hi-colour modes (and only
when the ULANext extended palette is not enabled).
INK and PAPER values can range from 0..255 in lo-res and layer 2.
In hi-res mode, either INK or PAPER can be used to select the appropriate colour
scheme (see list later).

The LAYER command also allows you to select layer 0. This is the default
layer/mode when NextZXOS starts and is identical to the standard Spectrum screen
mode used on 48K/128K Spectrums. This is the mode you should select in order to
load and run standard Spectrum software.

You can switch back and forth between layer 1 and layer 2 without affecting what
is on the screen (as long as you always select the same layer 1 mode each time).
This allows BASIC programs to enable and manipulate both layer 1 and layer 2
screens, and use transparent areas so that both can be seen together.

The following LAYER commands are available:

LAYER 0
Select layer 0, standard Spectrum mode

LAYER 1,0
Select lo-res mode

Page 12 of 40

LAYER 1,1
Select standard resolution mode

LAYER 1,2
Select Timex hi-res mode

LAYER 1,3
Select Timex hi-colour mode

LAYER 2
Select layer2

LAYER 2,0
Select layer2, and disable displaying it

LAYER 2,1
Select layer2, and enable displaying it

LAYER PALETTE n
Switch to using palette n (0 or 1) for the current layer

LAYER PALETTE n BANK b,offset
Set palette n for the current layer from bank b, at offset offset. Either 256
bytes or 512 bytes of data is used, depending upon the PALETTE DIM setting.

LAYER PALETTE n,i,v
Set palette n for the current layer, index i to value v
NOTE: v is always specified as a 9-bit value RRRGGGBBB (0-511) regardless of the
PALETTE DIM setting, and can be conveniently specified using the standard
Spectrum BIN function.

LAYER AT x,y
(Layer 2 or lo-res only).
Set the display offset for the top-left of the screen for the current layer to
x,y. This is used for scrolling effects.

LAYER OVER n
Set sprite/layer SLU ordering:

n=BIN 000 sprites over layer2 over ULA (layer1) - the default
n=BIN 001 layer2 over sprites over ULA (layer1)
n=BIN 010 sprites over ULA (layer1) over layer2
n=BIN 011 layer2 over ULA (layer1) over sprites
n=BIN 100 ULA (layer1) over sprites over layer2
n=BIN 101 ULA (layer1) over layer2 over sprites

LAYER BANK n,m
(Layer 2 only). Set current banks n..n+2 as frontbuffer (to be displayed) and
banks m..m+2 as backbuffer (for rendering). These values can be the same and
both default to 9.
This command always applies to the layer 2 banks, but can be executed in any
mode.

LAYER ERASE x,y,w,h
LAYER ERASE x,y,w,h,f
(Layer 2 or lo-res only).
Fill region width w pixels, height h pixels, top-left corner x,y with value f.
If f is not specifed, the current global transparency value (usually 227) is
used.

LAYER DIM x1,y1,x2,y2
Sets the clip window for the current layer from (x1,y1) to (x2,y2). Areas of the
layer outside this window are not visible. Note that all layer 1 modes and layer
0 share the same clip window; layer 2 has its own separate clip window.

LAYER CLEAR
Page 13 of 40

Reset all layer information to defaults. This is also done by NEW.
Resets banks, mode, layer2 enable, layer offsets, layer ordering.
Also resets mode windows to default settings (such as character set size, auto-
pause etc).

Differences between layer 0 and layer 1 mode 1.
Layer 0 behaves in exactly the same way as the screen always has on 48K and 128K
Spectrums. Layer 1 mode 1 has the same resolution and attributes, but behaves in
a slightly different manner under NextBASIC. It shares this same behaviour with
all other layer 1 modes (and layer 2).

In layer 0, the standard Spectrum memory map is in force (ROM, RAM 5, RAM 2, RAM
0). However, in all layer 1 modes, the top 8K of RAM 5 is replaced with 8K from
the NextZXOS RAM 8 bank. This is done so that BASIC still has access to the same
amount of memory as usual (~41K); without this change, it would lose about 6K to
the new screen modes.

The other main differences are:

Layer 0 pixel coordinates (used by PLOT, DRAW, CIRCLE) run from (0,0) at the
bottom left on the main screen area to (255,175) at the top right. The bottom
two screen lines are not normally accessible to these commands. However, in
layer 1/2 modes, pixel coordinates run from (0,0) at the top left of the screen
to (255,191) at the bottom right (511,191 in hi-res mode, 127,95 in lo-res
mode). In layer 1/2 modes it is also allowed to draw points, lines and circles
so that they go partly off-screen without generating “out of screen” errors.

Layer 0 PRINT coordinates (on channel “s”) are in character squares, defined as
(0,0) at the top left and (21,31) at the bottom right (again, the lower screen
is not usually accessible).

Layer 0 only accepts standard colour ranges (0..7 for INK/PAPER etc). Colours
from the extended ULANext palette with numbers higher than 7 can generally only
be specified in layer 1 (mode 1 - standard, or mode 3 - Timex hi-colour). For
layer 0 you can, however, POKE the system variable ATTR_P with the calculated
attribute value required and the desired ULANext colours will be used.

Layer 1/2 modes all use a full-screen system-defined text window for any PRINTs
directed to channel “s”. Therefore they generally use the same control codes as
other text windows (except justify and save/load are not available).

In layer 1/2, therefore, PRINT AT y,x uses character coordinates (as on layer
0), but this will not always be 24 lines by 32 characters, depending upon
whether different character size (and/or reduced height mode) has been selected.
Note that double-width/double-height modes don't affect the coordinate system
used.

In layer 1/2, it is also possible to use PRINT POINT x,y to change the print
position. This uses the same pixel coordinate system used by PLOT/DRAW/CIRCLE.

By default, scrolling auto-pause is turned on for the layer 1/2 mode full-screen
windows, so after a screen full of text has been printed the user must press
SPACE to continue. This behaviour can be disabled using control code 26, as with
other windows.

Layer 1/2 modes do not support “9” to mean contrast (for PAPER/INK) or “8” to
mean transparent (for PAPER/INK/BRIGHT/FLASH). These are taken to mean actual
colour numbers from the ULANext extended palette.

Timex Hi-Res colour scheme
The colour scheme for hi-res mode is selected using INK or PAPER (either as a
direct command or by PRINTing to the hi-res screen or a window). This will
immediately change the whole colour scheme. The colour schemes available (can be

Page 14 of 40

altered using ULANext palettes) are:

INK 0 (or PAPER 7) black on white
INK 1 (or PAPER 6) blue on yellow
INK 2 (or PAPER 5) red on cyan
INK 3 (or PAPER 4) magenta on green
INK 4 (or PAPER 3) green on magenta
INK 5 (or PAPER 2) cyan on red
INK 6 (or PAPER 1) yellow on blue
INK 7 (or PAPER 0) white on black

Page 15 of 40

Tiling commands
For layer 2 and lo-res modes, there are new commands available to draw complete
screens (or sections of a screen) from a set of tiles and a tilemap.

Tiles are either 8x8 pixels in size or 16x16 pixels in size. This allows a 16K
bank to hold 256 8x8 tiles or 64 16x16 tiles. Tiles are numbered 0..255.
Therefore, a complete set of 8x8 tiles occupies a single 16K bank, and a
complete set of 16x16 tiles occupies 4 16K banks. If you use 16x16 tiles, you
can restrict the tile numbers used and therefore reduce the memory requirements
(eg if you need 64 or fewer different tiles, only 1 16K bank is required).

A tilemap is a linear map of 8-bit tile numbers. The user can specify any width
up to 2048 tiles; each row of tiles follows directly after the previous one.
The tilemap must be fully contained in a single 16K bank. This gives a maximum
tilemap size of 256x64, 128x128, 2048x8 etc.

Any pixels in a tile which are the same colour as the current global
transparency colour (which defaults to 227) will not be written to the screen.
If you want to draw pixels containing the global transparency colour you can
temporarily change it to another colour (not used in your tiles) using the
PALETTE OVER command before using TILE. Alternatively, you can use the LAYER
ERASE command to clear regions of the screen to the global transparency colour
before drawing tiles on top.

Information on layer 2 and lo-res tilemaps is stored separately, so you can use
both. The TILE commands affect the currently selected layer/mode. They are:

TILE BANK n
Define bank n as containing the tiles (up to 4 banks n..n+3 if 16x16 tiles)

TILE DIM n,offset,w,tilesize
Define bank n as containing the tilemap, starting at offset offset in the bank.
The tilemap is width w (1-2048) and uses 8x8 (tilesize=8) or 16x16 (tilesize=16)
tiles.

TILE
TILE AT x,y
Draw entire screen from tilemap, from tile offset x,y in the tilemap (0,0 if not
specified).

TILE w,h
TILE w,h AT x,y
TILE w,h TO x2,y2
TILE w,h AT x,y TO x2,y2
Draw section of screen from tilemap.
Number of tiles to draw is width w, height h.
Draw from tile offset x,y in the tilemap (or 0,0 if not specified).
Draw to tile offset x2,y2 on the screen (or 0,0 if not specified).

Page 16 of 40

Text window changes
There are some changes to the text window channels from those used in the +3e.

As noted earlier, there are 5 system-maintained full-screen windows which are
used for all PRINTing through the standard “s” channel when one of the layer 1
or 2 modes is selected, and most of the changes were made to accommodate this.

Windows can only be used in the same layer/mode that was active when they were
defined. Control codes not listed here behave in exactly the same was as on +3e
v1.43. The full list of original +3e window control codes is shown here:
http://www.worldofspectrum.org/zxplus3e/channels.html

Control code Differences

0 On user-defined windows, turns justification off (as +3e)
On system windows, increases the current character set width
(can range from 3 to 8 pixels), and moves the cursor to the
start of the next line.

1 On user-defined windows, turns justification on (as +3e)
On system windows, decreases the current character set width
(can range from 3 to 8 pixels), and moves the cursor to the
start of the next line.

2 On user-defined windows, saves window contents (as +3e)
On system windows, causes the size 8 character set to be
replaced with the character set defined by the CHARS system
variable.

3 On user-defined windows, restores window contents (as +3e)
On system windows, causes the size 3..7 character sets to be
regenerated

15 Wash window. This does nothing on layer 2 or lo-res windows.

18,n FLASH n. Ignored unless in standard or Timex hi-colour modes,
and ULANext is not enabled.

19,n BRIGHT n. Ignored unless in standard or Timex hi-colour modes,
and ULANext is not enabled.

22,y,x AT y,x. Position is specified in terms of character positions
(dependent upon the character size currently selected and
whether reduced-height text is in operation. Double-width
and double-height do not affect the coordinates, however).

23,nLow,nHigh TAB n (same as +3e, but documentation incorrect on +3e site).

24,n ATTR n. Ignored in lo-res, layer2 and Timex hi-res modes.

25,y,xLow,xHigh POINT x,y. Changes print position to pixel coordinates x,y.

Previously this control code turned on or off extended UDGs
for codes 165-255 instead of keyword tokens. Under NextZXOS
extended UDGs are always used (LIST will expand keywords so
keyword token codes will not normally be seen by windows
anyway)

26,n Auto-pause every n character lines.
After each n character lines have been scrolled out of the
window, output will automatically pause until the SPACE key
is pressed (the bottom right character in the window will be
flashed to indicate SPACE is being waited for).
After a window has been cleared, the first pause occurs before
any lines have been scrolled out; subsequent pauses wait for n
character lines. Typically you would want to set “n” to the

Page 17 of 40

height of the window.
If set to zero (the default), auto-pause is disabled.

30,n On user-defined windows, selects justification mode 0, 1 or 2
(as +3e).
On system windows, changes the current character set width to
n (can be 3,4,5,6,7 or 8 pixels), and moves the cursor to the
start of the next line.

31,n On user-defined windows, selects whether embedded codes are
permitted in justify mode (as +3e).
On system windows, causes the size n character set to be
replaced with the character set defined by the CHARS system
variable.

User character sets
If the default character set(s) are replaced using control codes 2, 3 or 31 in a
system window, any subsequent text printed in any window (which doesn't have its
own user-defined character set) will use the new character set(s).

The system-defined character sets are partially shared: sizes 3 and 4 use the
same set (only the leftmost 3 pixels are used for size 3), and similarly so do
sizes 5 and 6. This should be borne in mind when replacing system character sets
using control code 31.

Pointer operations
Window channels (and full-screen mode channels) now support pointer operations.
The upper 16 bits contains y (in pixels) and the lower 16 bits contains x (in
pixels).

eg: DIM #2 TO wsize: height=INT (wsize/65536): width=wsize-65536*height
 RETURN #2 TO yx: y=INT (yx/65536): x=yx-65536*y
 GOTO #2,65536*y+x

GOTO #2,65536*y+x is equivalent to PRINT #2;POINT x,y;

Window input
Text windows now support the INPUT command, as in ResiDOS. If you use INPUT #,
then a cursor is added to the window at the current position. The user can then
input any text desired, using the left and right arrows to move along the text
input so far, or the up and down arrows to move to the start or end of the text.
Up to 191 characters can be accepted into each input variable.

INPUT # may also now be used with other channels such as file, memory and
variable channels. In these cases it is advisable to avoid any accidental
outputs to the channels, by not using any prompt strings, and by using only the
semicolon as a separator. In most cases you will want to input a string using
the LINE modifier; without this, the data in the file (or other channel) would
need to be surrounded with quotes.

INPUT (windowed or non-windowed) now supports the following editing keys (many
of which match those in the NextBASIC editor):

• CURSOR LEFT/RIGHT/UP/DOWN - Move cursor
• EXTEND,CURSOR LEFT - Move to start of input
• EXTEND,CURSOR RIGHT - Move to end of input
• TRUE VIDEO - Move left one word
• INVERSE VIDEO - Move right one word
• DELETE - Delete character
• EXTEND,DELETE - Delete character right
• EXTEND,TRUE VIDEO - Delete word left
• EXTEND,INVERSE VIDEO - Delete word right

Page 18 of 40

• EXTEND,9 - Delete to start of input
• EXTEND,0 - Delete to end of input
• EDIT - Delete entire input
• EXTEND,1 - Toggle whether keys ASDFGYUQ produces symbols or tokens

Window definitions
Windows are still defined using character squares as before. In lo-res mode,
this means the maximum window size is 16x12 (not 32x24). In hi-res mode,
“character squares” are considered to be 16 pixels wide, so the maximum window
size is still 32x24 for this mode.

Memory constraints
It should be noted that saving/loading window contents (only available on user-
defined windows) is a costly operation. The amount of memory required for each
character square is:
•9 bytes (standard resolution mode)
•16 bytes (Timex hi-res or hi-colour modes)
•64 bytes (lo-res or layer2 modes)

For example, a 10x10 window in layer2 would require 6400 bytes of available
memory for saving the contents.

Page 19 of 40

BASIC Program Extensions
It is now possible to write BASIC programs larger than the usual ~41K with a
little extra effort. Sections of BASIC programs can be copied into any memory
bank available to the user (and saved/loaded with the SAVE/LOAD..BANK commands),
and the program can then switch between lines in the “main” program area and a
bank.

The following new commands are available to manage banked sections of BASIC
programs:

BANK n LINE x,y
Copies lines x to y inclusive from the main program to bank n. The total number
of bytes used in the bank will be shown.
Once this has been done it is not possible to change or delete any lines in the
banked section (except by completely overwriting the bank's contents using
another BANK...LINE command).

Note: The maximum length of a line that can be copied into a banked section of
program is 256 bytes. This differs slightly from the number of characters in the
line as seen in the NextBASIC editor, since the restriction is based on the
“tokenised” length of the line: each token, such as PRINT, only uses up 1 byte.
However, numeric literals in standard (non-integer) expressions use an extra 6
bytes for a hidden floating-point representation. Additionally there is a 5-byte
overhead for the line number, line length and terminating ENTER character.

BANK n LIST
BANK n LIST l
BANK n LIST PROC name()
List lines (optionally from l or procedure named name) in bank n

BANK n MERGE
Copy all lines back from bank n into the main program

BANK n GOTO l
GOTO line l in bank n. To GOTO the main program from a banked section, use
n=255.

BANK n GOSUB l
GOSUB line l in bank n. To GOSUB the main program from a banked section, use
n=255.

BANK n PROC name(expressionlist)
BANK n PROC name(expressionlist) TO paramlist
Call a procedure in bank n. To call a procedure in the main program from a
banked section, use n=255.

BANK n RESTORE l
Set the DATA pointer to line l in bank n

Working with BASIC programs
The following additional commands are provided:

LIST PROC name()
Lists program starting with the procedure named name.

LINE start,step
Renumbers the BASIC program with new starting line number start and incrementing
numbers by step.

LINE MERGE first,last
Merges lines from first to last into a single line (separated by colons).

ERASE first,last
Erases a specified section of BASIC program (from first to last line,

Page 20 of 40

inclusive).

ERASE
Erases the entire BASIC program (but leaves variables intact), and finish with
an “OK” report.

Notes
Any GOTO or GOSUB within a banked section will go to a line in the same bank.

Any RETURN or ENDPROC will always return to the calling bank.

DEF FN statements must be in the main program; they will not be searched for in
banked sections.

Lines in banks can have the same numbers as main program lines.

Renumbers won't affect or take into account lines in banked sections.

Commands that affect program lines can only be used as direct commands, and not
be part of a program. These are:
ERASE first,last
LINE start,step
LINE MERGE first,last
BANK n LINE x,y
BANK n MERGE

The exception is the new command:
ERASE
which erases all lines in the BASIC program (but leaves the variables intact)
and finishes with an “OK” report. This is a useful command to have as the last
line of your C:/NEXTZXOS/AUTOEXEC.BAS file.

Page 21 of 40

Miscellaneous other features

CONT and RAND may be used as abbreviations for CONTINUE and RANDOMIZE.

LET is now optional and may be omitted. For example, you may write:

10 x=54:h$=”abcde”

instead of:

10 LET x=54:LET h$=”abcde”

; (semi-colon) may now be used as an alternative to REM.

This is intended for use with dot-commands which can process such lines whilst
NextBASIC ignores them. eg an assembler might use as follows:

1000 .assemble
1010 ; LD BC,1234
1020 ; RET

The following additional commands are provided:

RUN AT speed
Changes the speed of the ZX Spectrum Next.
Allowable values for speed are:

0 (3.5MHz)
1 (7MHz)
2 (14MHz)
3 (28MHz)

REG reg,value
Sets a Next Register.
eg to perform a soft reset:

REG 2,%@0000001

SPECTRUM 48
Switches into 48K BASIC mode whilst retaining the current BASIC program
(although NextBASIC commands and features will no longer be available). This
differs from the existing SPECTRUM command, which leaves the Next configured as
a 128K Spectrum in 48K BASIC mode. Instead, the SPECTRUM 48 command leaves the
Next configured as a genuine 48K Spectrum, with 48K timings, the original 48K
BASIC ROM and with the 128K paging hardware disabled.

SPECTRUM LOAD
Reconfigures the Next as a 128K Spectrum and launches the Tape Loader menu
option.

Page 22 of 40

Sound support

The PLAY command has been augmented to support the Next's turbosound features
(3xAY chips).

9 strings are now allows:
•strings 1,2,3 correspond to channels A,B,C of AY 1
•strings 4,5,6 correspond to channels A,B,C of AY 2
•strings 7,8,9 correspond to channels A,B,C of AY 3

The W (waveform) parameter affects only the AY chip for the string in which it
appears, so each chip may have a different value at once.

If more than 3 strings are provided, the default volume is reduced to 13 in
order to prevent clipping when many channels are playing at once. If 3 or fewer
strings are provided, the default volume is 15 (as before).

3 new parameters are provided, which affect only the AY chip for the string in
which they appear:

L
Restrict audio output for this AY chip to the left speaker only

R
Restrict audio output for this AY chip to the right speaker only

S
Allow audio output for this AY chip to go to both left and right speakers again

If the Next is set up with ABC stereo (which is the default), normally channel A
goes to the left speaker, B goes to left and right, and C goes to right.

Therefore if the L parameter is used, only channels A and B from the current AY
chip will be audible. Similarly, if R is used, only channels B and C will be
audible.

Page 23 of 40

BASIC program flow structures

The IF command now supports ELSE, which precedes a list of commands to be
executed if the test was false. The ELSE must be on the same line as the IF, and
preceded by a colon.
IF...THEN...ELSE statements may be nested. For example:

10 IF x=0 THEN PRINT “null”:BEEP 1,0:ELSE IF x=1 THEN PRINT “one”:BEEP 1,1:ELSE
PRINT “x was “;x

Note that this is not “true” nesting since there is no marker to indicate the
end of an IF. When any IF condition fails, execution skips to the code following
the next ELSE statement within the same line.

A new looping structure is also available. The start of the loop is marked with
REPEAT and the end with REPEAT UNTIL condition. This will keep repeating the
loop until condition is true (use REPEAT...REPEAT UNTIL 0 for an infinite loop).

Optionally, any number of WHILE statements may be present within the loop,
taking the form: WHILE condition. If the condition is false the loop is
terminated immediately and execution continues after the matching REPEAT UNTIL
statement.

These features allow you to construct loops with conditions at the top or the
bottom of the loop, or at points in between (or any combination of these).

REPEAT loops may be nested to any depth.

Examples:

10 LET address=32768
20 REPEAT
30 READ b
40 WHILE b>=0
50 POKE address,b
60 LET address=address+1
70 REPEAT UNTIL 0
80 DATA 62,25,1,112,17,201,-1

10 REPEAT
20 INPUT “Enter a number (-1 to end): “;n
30 PRINT n
40 REPEAT UNTIL n=-1

10 LET y=0
20 REPEAT : WHILE y<22
30 PRINT AT y,0;”This is line “;y
40 REPEAT UNTIL 0

10 REPEAT
20 INPUT “Stock item: “;x$
30 WHILE x$<>””
40 INPUT “Quantity: “;n
50 PRINT x$;” : “;n
60 REPEAT UNTIL x$=”END”

Page 24 of 40

Procedures and local variables

Named procedures can now be defined, using the following command:

DEFPROC procedurename(paramlist)

where procedurename follows the same rules as standard numeric variables (must
start with a letter, and contain only letters, numbers and spaces; when matching
names, the case of letters is unimportant and spaces are ignored)

and paramlist is an optional list of up to 8 variable names (simple strings,
numeric variables or integer variables, but not arrays of any type). These names
can be used within the procedure to reference the values that are passed in by
the PROC command.

The execution of a procedure is terminated by the following command:

ENDPROC

It is possible to have more than one ENDPROC in a procedure (for example an
early exit can be made with a command such as IF condition THEN ENDPROC).

A procedure is called with the following command:

PROC procedurename(expressionlist)

The number of expressions and each of their types must match those defined in
the DEFPROC, otherwise a Q Parameter Error report will be generated. (Note that
you can provide an integer expression for a numeric parameter or vice versa, but
strings/numbers must be correctly matched).

Optionally, a procedure can return up to 8 results to the caller, with the
following command variants:

ENDPROC = expressionlist

PROC procedurename(expressionlist) TO paramlist

Again, the types of expressions in the ENDPROC must match the types of the
variables in the PROC's paramlist. It is acceptable for the ENDPROC to provide
more results than the PROC requires (or even for the PROC not to have a
paramlist at all): the unneeded values will just be discarded.

Within a procedure (or within a subroutine called by GOSUB) it is possible to
create local variables, which can be used within the procedure/subroutine
without affecting any existing variables with the same name (the original values
will be restored at the ENDPROC or RETURN command):

LOCAL variablelist

As with the paramlist in a DEFPROC (which is itself a set of local variable
names for the procedure, initialised with the values from the PROC command),
only simple string, numeric and integer variables can be made local; not arrays.

Each LOCAL statement can contain up to 256 variable names, and multiple LOCAL
statements may be present in a subroutine or procedure; the only limit on the
number of local variables that can be created is available memory.

Local variables are initialised to zero (or the empty string) by the LOCAL
command.

Procedures may also be recursive. Here is a simple example:
Page 25 of 40

 10 INPUT “Enter a number 0+:”;x
 20 PROC factorial(x) TO f
 30 PRINT “The factorial of “;x;” is “;f
 40 GOTO 10
 999 STOP
1000 DEFPROC factorial(n)
1010 IF n<0 OR n<>INT n THEN PRINT “Factorial only possible for non-negative
integers”:STOP
1020 IF n<=1 THEN ENDPROC=1
1030 LOCAL partial
1040 PROC factorial(n-1) TO partial
1050 ENDPROC=n*partial

Page 26 of 40

Error-trapping

Any error (except “0 OK” which is not considered an error) can be trapped by the
ON ERROR command, allowing BASIC to recover from expected error conditions.

To turn on error trapping, use the command:

ON ERROR statementlist

This will cause the statements after the ON ERROR command to be executed
whenever an error report would normally have been displayed. Note that this
command must be part of a program and cannot be entered as a direct command.

To turn off error-trapping again, just use:

ON ERROR

This is required if you wish to generate errors again. eg the following will
display “There was an error!” and terminate with the 9 STOP statement error when
line 20 is executed:

10 ON ERROR PRINT “There was an error!”:ON ERROR:STOP
20 PRINT 5/0

To generate the last error that actually occured (this does not need error
trapping to be turned off), use the command:

ERROR

eg this will print the message but still give the correct Number too big report.

10 ON ERROR PRINT “There was an error!”:ERROR
20 PRINT 5/0

You can also obtain details of the last error using the following command:

ERROR TO codevar,linevar,statementvar,bankvar

This will store the error code in the numeric variable codevar, the line number
in linevar, the statement number in statementvar and the bank number in bankvar.
Note that you do not need to supply later variable names if you do not need the
information, eg all of these are valid:

ERROR TO e
ERROR TO e,l
ERROR TO e,l,s
ERROR TO e,l,s,b

NOTE: Any errors generated by a dot command are indicated with an error code of
255 (“Dot Command Error”).

Localised error-trapping

As well as (or instead of) having a global error-trapping routine for your
program, each procedure, subroutine and repeat loop may have its own local
error-trapping routine, simply by using the ON ERROR command within it.

When an error occurs within a repeat loop, subroutine or procedure, it will be
trapped by its own ON ERROR routine if there is one. If not, the error will be
passed out to the next level and trapped by any ON ERROR routine there and so
on. Only if there is no ON ERROR at any level above the command that caused the
error will a normal error report be generated.

For example:

Page 27 of 40

 10 ON ERROR PRINT “Outer error handler!”:ERROR
 20 REPEAT
 30 PRINT “Starting...”
 40 ON ERROR PRINT “Oops!”:ON ERROR:STOP
 50 GO SUB 100
 60 PRINT “Iterating...”
 70 ON ERROR
 80 REPEAT UNTIL 0
 90 STOP
 100 ON ERROR PRINT “Bad pigs!”:RETURN
 110 PROC myproc()
 120 PRINT “Pigs:”;pigs
 130 RETURN
 200 DEFPROC myproc()
 210 LOCAL m
 220 ON ERROR PRINT “Myproc died...”:ENDPROC
 230 PRINT “m=”;m,”n=”;n
 240 ENDPROC

Note that in REPEAT loops it is important to turn off any local error handling
for that loop before the REPEAT UNTIL is executed. If not, the loop start cannot
be found and a Loop error would result (and be trapped by the loop's own error
handler). Removing line 70 in the example above would demonstrate this.

Also note that any LOCAL commands in a procedure or subroutine must come before
a local error handler (ie lines 210 and 220 in the example cannot be reversed).

Page 28 of 40

Integer variables and expressions

For additional speed and memory efficiency, NextBASIC provides a new integer
expression evaluator. Usually all integer values are treated as unsigned 16-bit
values (signed 16-bit calculations and comparisons can also be performed, see
later), and all operations are performed modulo 65535, with no checks for
overflow/underflow (except division by zero, which results in error 6, Number
too big).

An integer expression can be used in any BASIC line where a numeric expression
is normally expected. To indicate an integer expression instead of a floating
point expression, a % symbol must always precede an integer expression. It is
important to note that after the % symbol has been used, all variable names in
the expression refer to the specially-provided integer variables and arrays, and
not the standard floating-point numeric variables.

Similarly, integer variables can be used in assignments (such as LET, INPUT,
READ, FOR) by preceding their name with a %.

It is not generally possible to access standard numeric variables or functions
within an integer expression (but see the special INT{ } notation later), or to
access integer variables or operations within a standard numeric expression.

It is possible to assign an integer expression to a standard normal numeric
variable, or vice-versa, and the value will be converted appropriately. For
example, all the following assignments are valid:

LET %A=2*PI*radius
assigns truncated floating point calculation to integer variable A

LET %B=%B+(A(7)<<3)
shifts integer array element A(7) left 3 bits and adds to integer variable B

LET addr=%x(1)<<8+x(0)
calculates standard numeric variable addr from low and high bytes in integer
array X elements 0 and 1

Note that DEF FN does not support user-defined integer functions.

FOR..NEXT loops may be used with integer variables as the index, eg:
10 FOR %i=%$c9 TO 220
20 PRINT %i
30 NEXT %i

Integer loops run much faster than loops using a standard floating point index
variable, especially when loops are used towards the end of long programs.
Integer FOR..NEXT loops run at the same speed regardless of where they are
located in the BASIC program, but standard FOR..NEXT loops become progressively
slower the later they are located in the program.

STEP values up to 32767 are allowed, as well as negative STEP values from -1 to
-32767.

Note that although the loop index in an integer loop is treated as an unsigned
value, this will actually work for signed loop limits as well (eg FOR %i=-3 TO -
7 STEP -1). The one restriction is that both loop limits must be either positive
or negative (eg FOR %i=-3 TO 3 STEP 1 will not work).

Integer variables
A fixed set of integer variables are provided: the user cannot define additional
variables. The two main advantages of a fixed set of variables are:
•speed of access (all integer variables are at a known location)
•memory usage - the integer variables are stored in additional RAM reserved by
NextZXOS, and hence do not use any space in the normal BASIC/variables area

Page 29 of 40

All integer variables are erased to zero at RUN, CLEAR and NEW. Note, however,
that integer variables are not saved/loaded along with BASIC programs, as is the
case with normal floating-point and string variables. Therefore they survive a
LOAD and can potentially be used to communicate information between BASIC
programs.

There are 26 integer variables provided, named A to Z (can also be referred to
in lower-case, a to z).

Integer arrays
There are also 26 integer variable arrays provided, named A() to Z() (or a() to
z()), each containing 64 elements, numbered 0 to 63.

Note that array elements are numbered from 0, not 1 as in normal floating-
point/string arrays. Also note that integer array element A(0) is not the same
as integer variable A.

It is not possible to re-dimension integer arrays: for speed, these are pre-
allocated. However, to provide a little more flexibility it is possible to treat
the array memory in different ways using [] subscript notation instead of the
normal () notation.

When using a single [] subscript, you can treat an integer array as having more
than 64 elements. Additional elements are taken from subsequent arrays in
memory. Accessing C[n] would use memory in arrays C,D,E.. in turn, depending
upon the maximum value of n used. For example, if you required 200 elements so n
ranged from 0..199, then 4 arrays C(), D(), E() and F() would be in use
(200/64=3.13).

When using a double [][] subscript, you can treat a range of integer arrays as a
single two-dimensional array. In this case, the first subscript indicates the
integer array to be used (0=the named array, 1=the next array etc) and the
second subscript is the element number (0..63). For example, accessing G[n][m]
where n ranges from 0 to 7 would use the 8 arrays G()..N().

Available operators and functions
The following unary operators may precede any integer value or sub-expression:

! bitwise not
NOT logical not (gives 1 if argument is zero; otherwise gives 0)
- two's complement (negate)

Literal numbers can be specified in decimal (the default), hexadecimal (preceded
by the $ symbol) or binary (preceded by the @ symbol), eg:

32767
$ed01
@11100010
$FF

The following binary operators are available:
+ add
- subtract
* multiply
/ divide
MOD modulus (remainder)
<< shift left
>> shift right
& bitwise AND
| bitwise OR
^ bitwise XOR
< less than
> greater than
= equal to
<= less than or equal to

Page 30 of 40

>= greater than or equal to
<> not equal to
AND logical and (if 1st arg is 0, gives 0; otherwise gives 2nd arg)
OR logical or (if 2nd arg is 0, gives 1st arg; otherwise gives 1)

The six relational operators always produce a result of 0 for false and 1 for
true.

The following integer functions are available (parentheses are optional):
IN port read value from hardware port
REG reg read value from Next register
PEEK addr read byte from memory
DPEEK addr read double-byte (16-bit word) from memory
USR addr execute m/c routine and return value left in BC
BANK n PEEK o read byte from offset in bank
BANK n DPEEK o read double-byte (16-bit word) from offset in bank
BANK n USR addr execute m/c routine in bank and return value left in BC
RND n return random number
BIN n synonym for @n, specifying a binary value
SPRITE s return 1 (true) if sprite is visible, 0 otherwise
SPRITE CONTINUE s returns sprite movement status (see sprites section)
SPRITE AT(s,c) returns sprite coord/movement data (see sprites section)
SPRITE OVER(..) returns collision detection result (see sprites section)

Operations are performed in strictly left-to-right order, unless overridden by
the use of parentheses.

%RND n by default returns a random number in the range 0..n-1 (so that %RND n
gives the same as the floating-point expression INT(RND*n)). This behaviour can
be changed (see “Code options” below).

Code options
A pseudo-variable %CODE may be set to change the behaviour of various NextBASIC
operations. Each of the 16 bits controls a different feature.

Bit: Feature:
0 Set for %RND to return values in the range 0..n (instead of 0..n-1).

This allows %RND 65535 to be used to obtain a full 16-bit range of
random values (0..65535).

1..15 reserved for future use (must be set to 0).

For example, using the command:
%CODE=1

sets bit 0 of the code options and adjusts behaviour of %RND. This should be
done as part of your program’s initialisation code if it requires such
behaviour.

Note that, for compatibility purposes, using the RUN command or LOADing a BASIC
program resets all the code options to 0. Code options are not affected by the
CLEAR command.

Signed integer expressions
As noted earlier, by default all operators and functions in integer expressions
treat their arguments as unsigned, and produce unsigned results. However, it is
also possible to override this behaviour and evaluate signed 16-bit integer
expressions, with values in the range -32768..32767. This is done by enclosing
the part of the expression which should be evaluated as signed with the special
SGN{ } notation. An integer sub-expression or (more usually) the entire integer
expression can be treated in this way. eg:

LET x1=%SGN{-100/3}
LET x2=%50+SGN{-100/3}

The only operators that treat their arguments as signed within a signed integer
Page 31 of 40

expression are the arithmetic operators (* / MOD + -) and the relational
operators (< <= = >= > <>). All other operators and functions still treat their
arguments as unsigned values.

Embedded floating-point subexpressions
It is also possible to use the special INT{ } notation to embed an expression
that returns a standard numeric value within an integer expression. This, for
example, allows calculations to be included that are not supported in the
integer expression evaluator, or access to standard floating-point variables.
eg:

LET %x=%x+INT{LEN x$}
LET %x=%x*INT{apples}
LET %x=%SGN{x+INT{(INKEY$=”P” OR INKEY$=”p”)-(INKEY$=”O” OR INKEY$=”o”)}}

Page 32 of 40

Installable device drivers

NextZXOS allows for a number of device drivers to be installed/uninstalled at
will using the .install/.uninstall dot commands (currently a maximum of 4
drivers may be installed at any one time but this could change in the future).

These are mainly intended for use as drivers for external peripherals such as
printers, mice, network devices etc, but could be used for other purposes.

To install or uninstall a driver, use the following dot commands:

.install drivername.drv

.uninstall drivername.drv

The documentation that comes with the driver describes how to use it. Some
drivers may make use of the new DRIVER command. This has the following form:

DRIVER driverid,callid[,n1[,n2]] [TO var1[,var2[,var3]]]

where n1 and n2 are optional values to pass to the driver, and var1, var2 and
var3 are optional variables to receive results from the driver call. The
documentation for each driver will describe the individual DRIVER commands that
you can use.

Channel support
Some drivers can support input/output via the streams and channels system of the
Spectrum Next. If so, the documentation will describe how to open a channel,
using one of the following command variants (assuming the driver id is ASCII
'X'):

OPEN #n,”D>X”
open stream n to simple channel for device 'X'

OPEN #n,”D>X>string”
open stream n to channel described by string on device 'X'

OPEN #n,”D>X,p1”
open stream n to channel described by numeric value p1 on device 'X'

OPEN #n,”D>X,p1,p2”
open stream n to channel described by numeric values p1 and p2 on device 'X'

CLOSE #n
close stream n

Once a channel is open, you can use any of NextBASIC's stream input, output or
pointer manipulation commands (some drivers may not support all of these; the
documentation should describe what can be used). eg:

PRINT #n;....
INPUT #n;....
INKEY$ #n
RETURN #n,var (get current stream pointer to variable var)
DIM #n,var (get current stream size/extent to variable var)
GOTO #n,value (set current stream pointer)
NEXT #n,var (wait for next input character from stream and store in var)

Page 33 of 40

System variable changes
The following system variables have been changed (same format as +3 manual):

1 5B5FH (23391) INKL INK colour for lo-res mode (was BAUD)
1 5B60H (23392) INK2 INK colour for layer2 mode (was BAUD+1)
1 5B61H (23393) ATTRULA Attributes for standard mode (was SERFL)
1 5B62H (23394) ATTRHR Attributes for hi-res mode (only paper

colour in bits 3..5 is used) (was SERFL+1)
1 5B63H (23395) ATTRHC Attributes for hi-colour mode (was COL)
1 5B64H (23396) INKMASK Softcopy of ULANext inkmask(or 0)(was WIDTH)
N1 5B65H (23397) LSBANK Temp bank in LOAD/SAVE & others (was TVPARS)
X1 5B68H (23400) FLAGN Flags for the NextZXOS system (was XLOC)
1 5B69H (23401) MAXBNK Maximum available RAM bank (was YLOC)
1 5B73H (23411) TILEBNKL Tiles bank for lo-res (was RC LINE)
1 5B74H (23412) TILEML Tilemap bank for lo-res (was RC LINE+1)
1 5B75H (23413) TILEBNK2 Tiles bank for layer2 (was RC START)
1 5B76H (23414) TILEM2 Tilemap bank for layer2 (was RC START+1)
X1 5B77H (23415) NXTBNK Bank containing NXTLIN (was RC STEP)
X1 5B78H (23416) DATABNK Bank containing DATADD (was RC STEP+1)
N1 5B7BH (23419) L2SOFT Softcopy of layer2 port (was DUMPLF)
X1 5C7FH (23679) GMODE Graphical layer/mode flags (was P POSN)
1 5C81H (23681) STIMEOUT Screensaver control (was unused)
2 5CB0H (23728) unused (was NMIADD)

The following system variables have been inserted where STRIP1 and STRIP2 were,
within the temporary TSTACK area. This means that there are now a guaranteed 117
bytes of TSTACK when calling +3DOS:

2 5B7CH (23420) TILEWL Width of lo-res tilemap
2 5B7EH (23422) TILEW2 Width of layer2 tilemap
2 5B80H (23424) TILEOFFL Offset in bank for lo-res tilemap
2 5B82H (23426) TILEOFF2 Offset in bank for layer2 tilemap
2 5B84H (23428) COORDSX x coord of last point plotted (layer 1/2)
2 5B86H (23430) COORDSY y coord of last point plotted (layer 1/2)
1 5B88H (23432) PAPERL PAPER colour for lo-res mode
1 5B89H (23433) PAPER2 PAPER colour for layer2 mode
Nx 5B8AH (23434) TMPVARS Base of temporary system variables (space

shared with bottom of TSTACK)

Page 34 of 40

List of updates

Updates: 26 September 2022

Added information on the editing keys available in INPUT from v2.07l.

Updates: 18 June 2022

Added note that window channels (and full-screen mode windows) now support
pointer operations.

Updates: 11 March 2022

Clarified that scaling applies to x/y relative coordinates for unified sprites.
Noted that relative x/y coordinates can now be in a full 8-bit range (-128 to
+127), fixed in v2.07e.

Updates: 5 November 2021

Updated %RND description: %RND 0 always gives 0 for compatibility with versions
before v2.06J.

Added new %CODE pseudo-variable. Currently allows %RND behaviour to be changed
to give random number in range 0..n (allowing full 16-bit range for %RND 65535).

Updates: 26 October 2020

Clarified that %RND 0 gives a random number in the full 16-bit range 0..65535.

Noted maximum banked line length is 256 bytes.

Updates: 30 March 2020

Clarified how integer loops work with negative loop limits and/or steps.

Noted that CONT and RAND can now be used as abbreviations for CONTINUE and
RANDOMIZE.

Noted that LET is now optional (from v2.06A) and may be omitted.

Updates: 25 March 2020

Documented the new sprite-related features added in v2.06:
* there are now 128 sprite objects
* the main SPRITE command is extended with 3 new parameters (rf, mx, my)
* all parameters in the main SPRITE command are now optional
* added new SPRITE STOP, SPRITE RUN, SPRITE MOVE, SPRITE PAUSE and
 SPRITE CONTINUE commands
* added new SPRITE, SPRITE AT, SPRITE CONTINUE and SPRITE OVER functions
 into the integer expression evaluator

Updates: 30 January 2020

Added new SPECTRUM 48 and SPECTRUM LOAD commands.

Updated NextZXOS version number referred to, for day zero release (v2.04).

Page 35 of 40

Updates: 29 November 2019

Added a couple of missing changes to the system variables.

Updates: 28 November 2019

Added 23 (TAB) to list of window control code changes from +3e (not really a
change, but mis-documented on the +3e site).

Added new commands (plus enhanced POKE and BANK..POKE commands):
REG reg,value
POKE addr,valuelist...
BANK n POKE addr,valuelist...
DPOKE addr,valuelist...
BANK n DPOKE addr,valuelist...

Added special-case assignment commands for reading strings from memory:
LET stringdest = PEEK$(addr,len)
LET stringdest = PEEK$(addr,~)
LET stringdest = PEEK$(addr,~char)
LET stringdest = BANK n PEEK$(addr,len)
LET stringdest = BANK n PEEK$(addr,~)
LET stringdest = BANK n PEEK$(addr,~char)

Revamped integer expressions section to include all the new features as at
v2.03b, including:

alternative views of integer arrays using [] subscripting
SGN{} and INT{} sub-expressions
IN, REG, PEEK, DPEEK, USR, BIN, RND, BANK..PEEK, BANK..DPEEK, BANK..USR
functions
NOT, - unary operators
AND, OR binary operators

Noted that RUN AT can now also select 28MHz.

Added new keyword token codes.

Clarified that ENDPROC always returns to the calling bank.

Removed deprecated BANK..PEEK and BANK...USR commands.

Updates: 23 October 2019

Added missing description of BANK n PROC command.

Fixed “main program” id from -1 to 255 in BANK n GOTO/GOSUB/PROC commands.

Updates: 18 May 2019

Clarified that integer variables survive across a LOAD command.
Fixed typo in one of the REPEAT examples.

Updates: 18 Oct 2018

Clarified that error trapping does work for dot commands.

Updates: 23 Aug 2018

Added new BANK n USR address command to execute machine-code routines in any
bank.

Page 36 of 40

Updates: 15 Aug 2018

Noted that ; may be used as an alternative to REM (intended for dot command use,
eg for an assembler).

Updates: 8 Jul 2018

Updated the list of new error messages.

Updates: 20 May 2018

Noted that LAYER CLEAR also resets mode windows to default settings.

Added LIST PROC, BANK..LIST PROC, RUN AT and LINE MERGE commands.

Updated text windows: control code 25 is now used to specify a new print
position using pixel coordinates.

Updated notes on layers to reflect that PRINT AT now uses character position
coordinates (as with layer 0) and that there is a new PRINT POINT facility which
allows position to be specified with pixel coordinates.

Updates: 19 Feb 2018

Noted that PLOT/DRAW/CIRCLE in layer 1/2 modes may be drawn so that they are
partly off-screen without generating “out-of-screen” errors.

Updated system variables (COORDSX, COORDSY, PAPERL, PAPER2 replacing some
previously-described variables).

Added section describing enhancements to the PLAY command.

Updates: 12 Feb 2018

Added new procedures support (DEFPROC, ENDPROC, PROC, LOCAL commands).

Added new error-trapping support (ON ERROR, ERROR, ERROR TO commands).

Updated keywords list.

Updated error message list.

Changed POINT x,y,var command syntax to POINT x,y TO var.

Changed BANK n PEEK offset,var command syntax to BANK n PEEK offset TO var.

Updates: 6 Feb 2018
Replaced modulus operator % with MOD (new token code $8d).

Removed unary + and - operators from the integer expression evaluator.

Updates: 28 Jan 2018
Added new section on installable device drivers, with new DRIVER command.

Moved the new system variables INKL, INK2, ATTRULA, ATTRHR, ATTRHC, INKMASK to
newly-freed system variables (previously used for printer).

Updates: 17 Jan 2018
Copied descriptions of commands in earlier updates into the main text.

Page 37 of 40

Clarified that layer 2 banks cannot be released by the BANK CLEAR command.

Added further notes and examples for the new structured programming commands.

Added token codes for REPEAT, WHILE and UNTIL.

Updates: 15 Jan 2018
Clarified that all commands accessing banks mark them as “owned” by BASIC
(except BANK CLEAR which releases them).

Clarified that LAYER BANK may be executed in any mode, but always applies to
layer 2.

Added new ERASE command which erases all lines of a BASIC program. It may be
used within a program, so is suitable as the last line of a
C:/NEXTZXOS/AUTOEXEC.BAS file.

Updated description of LINE command, which now just allows the whole program to
be renumbered (but with any starting number and step).

Added new REPEAT...[WHILE]...REPEAT UNTIL looping structure (see main text for
full description).

Updates: 23 Dec 2017
Added new “Loop error” error and reworded “Direct command only” to “Direct
command error”.

Clarified behaviour of integer FOR/NEXT loops.

Added new ELSE command and token.

Updates: 12 Dec 2017
A new command (now in main text of the editor changes document) has been added:
SPECTRUM SCREEN$ n,t

Updated system variables with new STIMEOUT system variable.

Updates: 30 Nov 2017
The BANK command can now use banks 5,2,0 (the standard 48K memory) without
restriction.

Added new BANK...LAYER command.

Noted that transparent pixels are not drawn by the TILE command.

Updates: 23 Nov 2017
Updated the notes on INPUT # which can now be used with other channels (file,
memory, variable) as well as windows and the standard “K” channel.

The REMOUNT command should be entered when the user wishes to change the SD
card. When the prompt “Remove/insert SD and press Y” is shown the SD card may be
changed, and then the Y key should be pressed.

Updates: 14 Nov 2017
The auto-pause window control code (26,n) is changed: “n” is the number of
character lines to be scrolled between pauses, not pixel lines. Also the bottom
right-hand character square is now flashed rather than inverted to indicate when
the window is paused and waiting for SPACE to be pressed.

Page 38 of 40

By default, scrolling auto-pause is turned on for the layer 1/2 mode full-screen
windows, so after a screen full of text has been printed the user must press
SPACE to continue. This behaviour can be disabled using control code 26, as with
other windows.

Updates: 6 Nov 2017
Removed “bright magenta” from description of the transparency colour (227) since
the default value for ULA's bright magenta has been changed to 231 and so it no
longer acts as a transparency.

Note that the same clip window (as specified by the LAYER DIM command) is shared
between layer 0 and all layer 1 modes. Layer 2 has its own clip window (as do
the sprites, this being specified by the SPRITE DIM command).

Added new command REMOUNT (token code $99, with tokens << and >> now moved to
$97 and $98 respectively). The REMOUNT command (no parameters) re-initialises
the filesystem following an SD card change.

The following new command (now in the main text) will be added:
BANK NEW var

Behaviour of NEW in relation to banks has now changed: a NEW now does not mark
banks reserved by BASIC as free again; this only happens at a reset.

Updates: 21 Oct 2017
STRIP1/STRIP2 removed from system variables and replaced with TMPVARS.
INKHR system variable replaced with ATTRHR.

Clarified that the extended ULANext colour ranges are only allowed to be
specified with INK/PAPER in layer 1 modes (mode 1 - standard, or mode 3 - Timex
hi-colour). In layer 0 only the standard colour ranges 0..7 can be specified for
INK/PAPER (although any desired ULANext colour scheme can be selected for use in
layer 0 by POKEing the calculated attribute value into the system variable
ATTR_P).

Clarified that hi-res colour schemes can be chosen using either INK or PAPER.

Clarified that FLASH, BRIGHT and ATTR commands and window control codes are
ignored unless used in standard or Timex hi-colour modes (with FLASH and BRIGHT
always ignored if ULANext colours are enabled).

Updates: 10 Oct 2017
There will no longer be a restriction on the address for user-defined character
sets.

Clarified that changing character set size also causes the window print position
to be moved to the start of the next line.

Clarified that window save/load is costly in terms of memory.

Clarified that all commands using the standard “s” channel (not just PRINT) will
operate in the currently-selected layer/mode.

Window control code 26 is now “auto-pause” instead of “fill with byte”.

Added new integer expressions section.

Added new token codes for >> and <<.

The following new command (now in the main text) will be added:
BANK n CLEAR

Page 39 of 40

Updates: 5 Oct 2017
Updated text to clarify some details of how different attributes are handled in
different modes.

The following new commands (now in the main text) will be added:
LAYER DIM x1,y1,x2,y2
SPRITE DIM x1,y1,x2,y2
POINT x,y,var

Page 40 of 40

